Abstract
Despite substantial progress in single-cell RNA-seq (scRNA-seq) data analysis methods, there is still little agreement on how to best normalize such data. Starting from the basic requirements that inferred expression states should correct for both biological and measurement sampling noise and that changes in expression should be measured in terms of fold changes, we here derive a Bayesian normalization procedure called Sanity (SAmpling-Noise-corrected Inference of Transcription activitY) from first principles. Sanity estimates expression values and associated error bars directly from raw unique molecular identifier (UMI) counts without any tunable parameters. Using simulated and real scRNA-seq datasets, we show that Sanity outperforms other normalization methods on downstream tasks, such as finding nearest-neighbor cells and clustering cells into subtypes. Moreover, we show that by systematically overestimating the expression variability of genes with low expression and by introducing spurious correlations through mapping the data to a lower-dimensional representation, other methods yield severely distorted pictures of the data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have