Abstract

<abstract> <p>Dynamic cumulative residual entropy is a recent measure of uncertainty which plays a substantial role in reliability and survival studies. This article comes up with Bayesian estimation of the dynamic cumulative residual entropy of Pareto Ⅱ distribution in case of non-informative and informative priors. The Bayesian estimator and the corresponding credible interval are obtained under squared error, linear exponential (LINEX) and precautionary loss functions. The Metropolis-Hastings algorithm is employed to generate Markov chain Monte Carlo samples from the posterior distribution. A simulation study is done to implement and compare the accuracy of considered estimates in terms of their relative absolute bias, estimated risk and the width of credible intervals. Regarding the outputs of simulation study, Bayesian estimate of dynamic cumulative residual entropy under LINEX loss function is preferable than the other estimates in most of situations. Further, the estimated risks of dynamic cumulative residual entropy decrease as the value of estimated entropy decreases. Eventually, inferential procedure developed in this paper is illustrated via a real data.</p> </abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.