Abstract

We consider a continuous-time model for the evolution of social networks. A social network is here conceived as a (di-) graph on a set of vertices, representing actors, and the changes of interest are creation and disappearance over time of (arcs) edges in the graph. Hence we model a collection of random edge indicators that are not, in general, independent. We explicitly model the interdependencies between edge indicators that arise from interaction between social entities. A Markov chain is defined in terms of an embedded chain with holding times and transition probabilities. Data are observed at fixed points in time and hence we are not able to observe the embedded chain directly. Introducing a prior distribution for the parameters we may implement an MCMC algorithm for exploring the posterior distribution of the parameters by simulating the evolution of the embedded process between observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.