Abstract

We propose a fully Bayesian methodology for generalized kernel mixed models (GKMMs), which are extensions of generalized linear mixed models in the feature space induced by a reproducing kernel. We place a mixture of a point-mass distribution and Silverman's g-prior on the regression vector of a generalized kernel model (GKM). This mixture prior allows a fraction of the components of the regression vector to be zero. Thus, it serves for sparse modeling and is useful for Bayesian computation. In particular, we exploit data augmentation methodology to develop a Markov chain Monte Carlo (MCMC) algorithm in which the reversible jump method is used for model selection and a Bayesian model averaging method is used for posterior prediction. When the feature basis expansion in the reproducing kernel Hilbert space is treated as a stochastic process, this approach can be related to the Karhunen-Loeve expansion of a Gaussian process (GP). Thus, our sparse modeling framework leads to a flexible approximation method for GPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.