Abstract
Precise estimation of state variables and model parameters is essential for efficient process operation. Bayesian formulation of the estimation problem suggests a general solution for all types of systems. Even though the theory of Bayesian estimation of nonlinear dynamic systems has been available for 4 decades, practical implementation has not been feasible because of computational and methodological challenges. Consequently, most existing methods rely on simplifying assumptions to obtain a tractable but approximate solution. For example, extended Kalman filtering linearizes the process model and assumes Gaussian prior and noise. Moving-horizon-based least-squares estimation also assumes Gaussian or other fixed-shape prior and noise to obtain a least-squares optimization problem. This approach can impose constraints but is nonrecursive and requires computationally expensive nonlinear or quadratic programming. This paper introduces sequential Monte Carlo sampling for Bayesian estimation of chemical proce...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.