Abstract

We estimate a reduced-form model of credit risk that incorporates stochastic volatility in default intensity via stochastic time-change. Our Bayesian MCMC estimation method overcomes nonlinearity in the measurement equation and state-dependent volatility in the state equation. We implement on firm-level time-series of CDS spreads, and find strong in-sample evidence of stochastic volatility in this market. Relative to the widely used CIR model for the default intensity, we find that stochastic time-change offers modest benefit in fitting the cross-section of CDS spreads at each point in time, but very large improvements in fitting the time-series, i.e., in bringing agreement between the moments of the default intensity and the model-implied moments. Finally, we obtain model-implied out-of-sample density forecasts via auxiliary particle filter, and find that the time-changed model strongly outperforms the baseline CIR model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.