Abstract

Abstract We assimilate experimental data from non-reacting flow in the SCARLET (SCaled Acoustic Rig for Low Emission Technologies) test rig using physics-based Bayesian inference. We model the complex geometry of the combustor with a qualitatively-accurate 1D low order network model. At the first level of Bayesian inference, we assimilate experimental data to optimize the parameter values by minimizing the negative log posterior probability of the parameters of each model, given the prior assumptions and the data. At the second level of inference, we find the best model by comparing the marginal likelihoods of candidate models. We apply Laplace’s method accelerated with first and second order adjoint methods to assimilate data efficiently. The first order adjoint is used for rapid data assimilation and optimization. The first and second order adjoints are used for inverse uncertainty quantification. We propose six candidate models for the burner and select the model with most evidence given the data. This produces an improved physical model of the rig, with known uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.