Abstract

Bayesian approaches to data analysis are considered within the context of behavior analysis. The paper distinguishes between Bayesian inference, the use of Bayes Factors, and Bayesian data analysis using specialized tools. Given the importance of prior beliefs to these approaches, the review addresses those situations in which priors have a big effect on the outcome (Bayes Factors) versus a smaller effect (parameter estimation). Although there are many advantages to Bayesian data analysis from a philosophical perspective, in many cases a behavior analyst can be reasonably well-served by the adoption of traditional statistical tools as long as the focus is on parameter estimation and model comparison, not null hypothesis significance testing. A strong case for Bayesian analysis exists under specific conditions: When prior beliefs can help narrow parameter estimates (an especially important issue given the small sample sizes common in behavior analysis) and when an analysis cannot easily be conducted using traditional approaches (e.g., repeated measures censored regression).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.