Abstract
Psychologists have been trained to do data analysis by asking whether null values can be rejected. Is the difference between groups nonzero? Is choice accuracy not at chance level? These questions have been traditionally addressed by null hypothesis significance testing (NHST). NHST has deep problems that are solved by Bayesian data analysis. As psychologists transition to Bayesian data analysis, it is natural to ask how Bayesian analysis assesses null values. The article explains and evaluates two different Bayesian approaches. One method involves Bayesian model comparison (and uses Bayes factors). The second method involves Bayesian parameter estimation and assesses whether the null value falls among the most credible values. Which method to use depends on the specific question that the analyst wants to answer, but typically the estimation approach (not using Bayes factors) provides richer information than the model comparison approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.