Abstract

The tourism sector, with its perishable nature of products, requires precise estimation of demand. To this effect, we propose a deep learning methodology, namely Bayesian Bidirectional Long Short-Term Memory (BBiLSTM) network. BiLSTM is a deep learning model, and Bayesian optimization is utilized to optimize the hyperparameters of this model. Five experiments using the tourism demand data of Singapore are conducted to ascertain the validity and benchmark the proposed BBiLSTM model. The experimental findings suggest that the BBiLSTM model outperforms other competing models like Long Short-Term Memory (LSTM) network, Support Vector Regression (SVR), Radial Basis Function Neural Network (RBFNN) and Autoregressive Distributed Lag Model (ADLM). The study contributes to tourism literature by proposing a superior deep-learning method for demand forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.