Abstract
An arbitrary source function cannot be determined fully from projection data that are limited in number and range of viewing angle. There exists a null subspace in the Hilbert space of possible source functions about which the available projection measurements provide no information. The null-space components of deterministic solutions are usually zero, giving rise to unavoidable artifacts. It is demonstrated that these artifacts may be reduced by a Bayesian maximum a posteriori (MAP) reconstruction method that permits the use of significant a priori information. Since normal distributions are assumed for the a priori and measurement-error probability densities, the MAP reconstruction method presented here is equivalent to the minimum-variance linear estimator with nonstationary mean and covariance ensemble characterizations. A more comprehensive Bayesian approach is suggested in which the ensemble mean and covariance specifications are adjusted on the basis of the measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.