Abstract
A two-parameter continuous distribution, namely, power-modified Lindley (PML), is proposed. Various structural properties of the new distribution, including moments, moment-generating function, conditional moments, mean deviations, mean residual lifetime, and mean past lifetime, are provided. The reliability of a system is discussed when the strength of the system and the stress imposed on it are independent. Maximum-likelihood estimation of the parameters and their estimated asymptotic standard errors are derived. Bayesian estimation methods of the parameters with independent gamma prior are discussed based on symmetric and asymmetric loss functions. We proposed using the MCMC technique with the Metropolis–Hastings algorithm to approximate the posteriors of the stress-strength parameters for Bayesian calculations. The confidence interval for likelihood and the Bayesian estimation method is obtained for the parameter of the model and stress-strength reliability. We prove empirically the importance and flexibility of the new distribution in modeling with real data applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.