Abstract
ABSTRACTThis article addresses the various properties and different methods of estimation of the unknown parameter of length and area-biased Maxwell distributions. Although, our main focus is on estimation from both frequentist and Bayesian point of view, yet, various mathematical and statistical properties of length and area-biased Maxwell distributions (such as moments, moment-generating function (mgf), hazard rate function, mean residual lifetime function, residual lifetime function, reversed residual life function, conditional moments and conditional mgf, stochastic ordering, and measures of uncertainty) are derived. We briefly describe different frequentist approaches, namely, maximum likelihood estimator, moments estimator, least-square and weighted least-square estimators, maximum product of spacings estimator and compare them using extensive numerical simulations. Next we consider Bayes estimation under different types of loss function (symmetric and asymmetric loss functions) using inverted gamma prior for the scale parameter. Furthermore, Bayes estimators and their respective posterior risks are computed and compared using Markov chain Monte Carlo (MCMC) algorithm. Also, bootstrap confidence intervals using frequentist approaches are provided to compare with Bayes credible intervals. Finally, a real dataset has been analyzed for illustrative purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.