Abstract

Abstract Linking the accumulation of microstructural damage prior to crack initiation to the lifing of aero-engines components would help to better predict the time that a component spends in this crack initiation stage. We present the results and analysis of in-situ high-resolution X-ray diffraction (XRD) experiments of a Ti-6Al-4V specimen that experienced tensile loading using medium energy synchrotron X-rays (≤ 21 keV) carried out at the Australian Synchrotron. The XRD analysis characterised XRD line-broadening due to the build-up of dislocations and the formation of crystallites in α- and β-Ti-6Al-4V specimens. Using Bayesian XRD analysis methods, the density, spatial arrangement of dislocations, and crystallite size information for α- and β-phases of the Ti-6Al-4V was extracted from the XRD line-profiles, as a function of applied load. The XRD analysis was then compared and validated with transmission electron microscopy (TEM) analysis of the specimen before and after the loading. Comparison of the TEM and XRD analysis reveals broad agreement in terms of the microstructural damage of Ti-6Al-4V specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.