Abstract

The discrete skewed Laplace distribution is a flexible distribution with integer domain and simple closed form that can be applied to model count data. Parameters are estimated under empirical Bayes (EB) analysis and comparison are made between the Bayesian parameter estimation and classical parameter estimation, i.e. the maximum likelihood (ML) approach. The results show that the Bayesian parameter estimations are preferable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.