Abstract
Cell migration, the process by which cells move from one location to another, plays crucial roles in many biological events. While much research has been devoted to understand the process, most statistical cell migration models rely on using time-lapse microscopy data from cell trajectories alone. However, the cell and its associated nucleus work together to orchestrate cell movement, which motivates a joint analysis of coupled cell-nucleus trajectories. In this paper, we propose a Bayesian hierarchical model for analyzing cell migration. We incorporate a bivariate angular distribution to handle the coupled cell-nucleus trajectories and introduce latent motility status indicators to model a cell's motility as a time-dependent characteristic. A Markov chain Monte Carlo algorithm is provided for practical implementation of our model, which is used on real experimental data from MDA-MB-231 and NIH 3T3 cells. Through the fitted models, deeper insights into the migratory patterns of these experimental cell populations are gained and their differences arequantified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.