Abstract
▪ Abstract Bayesian data analysis relies on Bayes' Theorem, using data to update prior beliefs about parameters. In this review I introduce and contrast Bayesian analysis with conventional frequentist inference and then distinguish two types of Bayesian analysis in political science. First, Bayesian analysis is used to merge historical information with current data in an analysis of likely election outcomes in Florida in 2000; particular attention is paid to the sensitivity of the results to the choice of prior (i.e., how much confidence one places in the historical information). Second, a more “modern” style of Bayesian analysis is reviewed, relying on Markov chain Monte Carlo algorithms to generate computationally intensive “random tours” of the high dimensional posterior distributions that are the focus of many contemporary Bayesian analyses; the example used is a central problem in political science, the analysis of legislators' preferences using roll call data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.