Abstract
This article considers methodology for hierarchical functional data analysis, motivated by studies of reproductive hormone profiles in the menstrual cycle. Current methods standardize the cycle lengths and ignore the timing of ovulation within the cycle, both of which are biologically informative. Methods are needed that avoid standardization, while flexibly incorporating information on covariates and the timing of reference events, such as ovulation and onset of menses. In addition, it is necessary to account for within-woman dependency when data are collected for multiple cycles. We propose an approach based on a hierarchical generalization of Bayesian multivariate adaptive regression splines. Our formulation allows for an unknown set of basis functions characterizing the population-averaged and woman-specific trajectories in relation to covariates. A reversible jump Markov chain Monte Carlo algorithm is developed for posterior computation. Applying the methods to data from the North Carolina Early Pregnancy Study, we investigate differences in urinary progesterone profiles between conception and nonconception cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.