Abstract
With the introduction of massive renewable energy sources and storage devices, the traditional process of grid operation must be improved in order to be safe, reliable, fast responsive and cost efficient, and in this regard power flow solvers are indispensable. In this paper, we introduce an Interior Point-based (IP) Multi-Period AC Optimal Power Flow (MPOPF) solver for the integration of Stationary Energy Storage Systems (SESS) and Electric Vehicles (EV). The primary methodology is based on: 1) analytic and exact calculation of partial differential equations of the Lagrangian sub-problem, and 2) exploiting the sparse structure and pattern of the coefficient matrix of Newton-Raphson approach in the IP algorithm. Extensive results of the application of proposed methods on several benchmark test systems are presented and elaborated, where the advantages and disadvantages of different existing algorithms for the solution of MPOPF, from the standpoint of computational efficiency, are brought forward. We compare the computational performance of the proposed Schur-Complement algorithm with a direct sparse LU solver. The comparison is performed for two different applicational purposes: SESS and EV. The results suggest the substantial computational performance of Schur-Complement algorithm in comparison with that of a direct LU solver when the number of storage devices and optimisation horizon increase for both cases of SESS and EV. Also, some situations where computational performance is inferior are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.