Abstract
Increasing reports of antimicrobial resistance in wildlife highlight the significance of a One Health approach to managing resistance. We investigated the prevalence and diversity of class 1 integrons, a genetic determinant of resistance, in grey-headed flying foxes, a large fruit bat species belonging to the order Chiroptera. Class 1 integrons were detected in both wild flying foxes (5.3%) and captive flying foxes (41.2%) housed in wildlife rehabilitation facilities. Genes encoding resistance to aminoglycosides, trimethoprim and beta-lactams, and Qac efflux pumps were detected. Analysis of conserved integron elements and gene cassette arrays indicate the direction of integron transfer is from humans to flying foxes. The detection of two novel gene cassette arrays (5′CS-qacH-aacA34-blaOXA-21-3′CS and 5′CS-qacF-3′CS strongly suggests acquisition of genes from the environmental resistome into class 1 integrons within the flying fox microbiota. The dynamics of class 1 integrons in flying foxes indicates bats have a role in the emergence of novel antibiotic resistance determinants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.