Abstract

Population genetics has gained popularity as a method to discover glacial refugia in terrestrial species, but has only recently been applied to the marine realm. The last glacial maxima occurred 20,000 years ago, decreasing sea levels by 120 m and exposing much of the continental shelf in the northern Gulf of Mexico, with the exception of De Soto Canyon (2100 m depth). The goal of this study was to determine whether population dynamics of the giant deep-sea isopod, Bathynomus giganteus, were better explained by habitat diversity or by the past presence of a marine glacial refugium in De Soto Canyon. To accomplish this we (1) measured genetic diversity in De Soto Canyon and adjacent regions, (2) characterized gene flow and connectivity between these regions, and (3) investigated historical changes to population size. We sequenced three mitochondrial loci (12S, 16S, and COI) from 212 individuals and also performed a next-generation sequencing pilot study using double digest Restriction site-Associated DNA sequencing. We found high genetic diversity and connectivity throughout the study regions, migration between all three regions, low population differentiation, and evidence of population expansion. This study suggests that habitat heterogeneity, rather than the presence of a glacial refugium, has had an historical effect on the population dynamics of B. giganteus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call