Abstract
Space-filling designs help experimenters to represent simulation outputs efficiently when entire input spaces cannot be exhaustively explored. Batch sequential designs allow for intermediate analyses to occur as later batches of experimental design points are being tested, given the ability to change later design points based on the outputs observed, and stop the experiment when the current observations are deemed sufficient to reduce experimental cost. Nearly orthogonal-and-balanced (NOAB) designs have good space-filling properties and can accommodate design spaces with continuous, discrete, and categorical factors. In this paper, mixed-integer linear programming (MILP) formulations used to find NOAB resolutions III, IV, and V designs are extended to construct batch sequential NOAB designs, where design stages can use different NOAB approaches. A case study is presented where a simultaneous construction approach results in overall more desirable designs than when using design augmentation, yet requires a predefined number of points for each design stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Experimental Design and Process Optimisation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.