Abstract

The operational properties and the performance of components consisting of advanced ceramic materials, for example silicon carbide and silicon nitride, are mainly influenced by processing technology and process conditions. In grinding operations grain engagement and process kinematics determine the resulting surface topography as well as the degree of potential rim defects. The modelling of grain engagement and the computation of uncut chip thickness describe suitable ranges for process parameters resulting in minimized subsurface damages of the ceramic part. By means of single grain diamond scratch tests the limiting uncut chip thickness at the transition between plastic deformation of workpiece material and the occurrence of brittle microchippings during chip removal is evaluated. Based on theoretical models and experimental investigations a contribution to practical applications in grinding of advanced ceramics is explained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.