Abstract

We have been studying a real-time detection method for tissue changes induced by high-intensity focused ultrasound (HIFU) treatment using ultrasonic RF signals. It has been difficult to track the target region when the tissue to be treated deviates from the imaging plane along the elevation axis of the probe. In this study, a new 1.5-dimensional (1.5D) prototype phased array probe consisting of transducer elements along both the lateral and elevation axes was developed to track tissue motion along the elevation axis of the probe, and the elevational displacement range where the tracking is effective was investigated. The complex cross-correlation coefficient based on a block matching algorithm was applied to 2.5D volumetric RF images acquired by the 1.5D probe and the displacement vector along the elevation axis was calculated. From the results, it was found that the effective tracking range using this prototype probe was up to 3 mm, about 3 times that of a conventional 1D imaging probe. The proposed 1.5D phased array probe has the potential to track target tissue with intrafractional motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.