Abstract

The paper is devoted to the study of nonlinear stochastic Schrödinger equations driven by standard cylindrical Brownian motions (NSSEs) arising from the unraveling of quantum master equations. Under the Born–Markov approximations, this class of stochastic evolutions equations on Hilbert spaces provides characterizations of both continuous quantum measurement processes and the evolution of quantum systems. First, we deal with the existence and uniqueness of regular solutions to NSSEs. Second, we provide two general criteria for the existence of regular invariant measures for NSSEs. We apply our results to a forced and damped quantum oscillator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call