Abstract
A general existence and uniqueness theorem for solutions of linear dissipative stochastic differential equation in a Hilbert space is proved. The dual equation is introduced and the duality relation is established. Proofs take inspirations from quantum stochastic calculus, however without using it. Solutions of both equations provide classical stochastic representation for a quantum dynamical semigroup, describing quantum Markovian evolution. The problem of the mean-square norm conservation, closely related to the unitality (non-explosion) of the quantum dynamical semigroup, is considered and a hyperdissipativity condition, ensuring such conservation, is discussed. Comments are given on the existence of solutions of a nonlinear stochastic differential equation, introduced and discussed recently in physical literature in connection with continuous quantum measurement processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.