Abstract

In this study, four systems (S1, S2, S3, and S4) were evaluated to determine whether basic oxygen furnace sludge (BOFS), mainly composed of Fe (84%, mostly as elemental Fe and FeO), Ca (3%, as CaCO3), and Si (1%), is capable of removing As-spiked, Mn, Mg, and sulfate from an industrial acid mine drainage (AMDi) collected in a gold mine in Minas Gerais, Brazil. In the S1 system (BOFS/deionized water pH 2.5), the stability of the residue was evaluated for 408h under agitation. The results showed that only Ca and Mg were solubilized, and the pH increased from 2.5 up to 11.4 within the initial 24h and kept still until the end of the experiment (408h). The S2 system (BOFS/AMDi) achieved 100% removal of As and Mn, and 70% removal of sulfate after 648h. In the first 30min, the pH increased from 2.5 to 10, which was maintained until the end of the experiment. The removal of As, Mn, and sulfate in the presence of hydrogen peroxide (S3 and S4 systems - BOFS/AMDi/H2O2) was similar to that in the S2 system, which contained only BOFS. The formation of iron oxides was not accelerated by H2O2. As regards the removal of arsenic and sulfate species, the formation of incipient calcium arsenate and calcium sulfate dehydrated was indicated by X-ray diffraction analysis and PHREEQC modeling. Dissolved manganese and magnesium precipitated as oxides, according to the geochemical modeling. After contact with AMDi, the raw BOFS, initially classified as hazardous waste, became a non-inert waste, which implies simplified, less costly disposal. Except for sulfate, the concentrations of all the other elements were below the maximum permitted levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call