Abstract

Although Lake Anna, an impoundment in Central Virginia, receives acid mine drainage (AMD) from Contrary Creek, the effects of the AMD pollution on the lake are less severe than expected. Previous work at Lake Anna has shown that bacterial sulfate reduction in the lake sediments plays an important role in the recovery of the lake from the AMD inputs. Sulfate removal rates were measured in sediment microcosms under a variety of experimental conditions to determine the factors controlling the rate of sulfate and acidity removal from the lake water. Sulfate removal rates were not significantly different over the short term (3 weeks) in summer sediment microcosms incubated at 6 vs 26 °C. Winter sediment microcosms showed no significant sulfate removal during the 18 day experiment when incubated at either 6 or 28 °C. Thus there is a strong seasonal temperature effect in Lake Anna sediments but no significant short term effect. Simulated AMD, with and without Fe, was added to sediment microcosms collected from an unpolluted part of the lake. The microcosms with Fe had significantly higher rates of sulfate removal indicating that Fe plays an important role in transporting sulfate to the sediment and/or in preventing oxidation of the reduced sulfide. After 27 days, from 54 to 96% of the added sulfate in the simulated AMD was recovered as FeS or S0 in the top 4 cm of sediment. In a separate experiment, 35S-SOinf4sup2−was found to attach to precipitating Fe oxyhydroxides (1.5 to 4.7 mol SOinf4sup2−mol−1 Fe precipitate) upon mixing Contrary Creek (AMD) and Lake Anna waters. Results of this study suggest that sulfate removal may be more rapid in metal rich AMD systems thans in metal poor systems characteristic of those which receive acidic deposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call