Abstract

The paper presents a combined power amplifier system consisting of a linear amplifier unit with a switched-mode (class D) current dumping stage arranged in parallel. With this topology, the fundamental drawback of conventional linear power amplifiers-the high loss-is avoided. Compared to a pure class D (switching) amplifier, the presented system needs no output filter to reduce the switching frequency harmonics. This filter (usually of multi-stage type) generally deteriorates the transient response of the system and impairs the feedback loop design. Furthermore, the low-frequency distortions of switching amplifiers caused by the interlock delay of their power transistors are avoided with the presented switched-mode assisted linear amplifier system. This can be considered as a master-slave system with a guiding linear amplifier and a supporting class D slave unit. The paper describes the operating principle of the system, analyzes the fundamental relationships for the circuit design and presents simulation results. Finally, various further topologies of switched-mode assisted linear amplifiers are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.