Abstract

The northern corn rootworm (NCR), Diabrotica barberi Smith & Lawrence, is an economic pest of maize in the U.S. Corn Belt. The objective of this study was to determine the baseline susceptibility of a laboratory NCR strain to Bt proteins eCry3.1Ab, mCry3A, Cry3Bb1, and Cry34/35Ab1 using seedling, single plant, and diet-toxicity assays. Plant assays were performed in greenhouse using corn hybrids expressing one of the Bt proteins and each respective near-isoline. Diet-toxicity assays, consisting of Bt proteins overlaid onto artificial diet were also conducted. In both plant assays, significantly more larvae survived Cry34/35Ab1-expressing corn compared with all other Bt-expressing corn, and larvae that survived eCry3.1Ab-expressing corn had significantly smaller head capsule widths compared with larvae that survived Cry34/35Ab1-expressing corn. In seedling assays, larvae surviving eCry3.1Ab-expressing corn also had significantly smaller head capsule widths compared with larvae that survived mCry3A-expressing corn. Additionally, larvae that survived mCry3A-expressing corn weighed significantly more than larvae surviving eCry3.1Ab- and Cry34/35Ab1-expressing corn. In single plant assays, no significant differences in larval dry weight was observed between any of the Bt-expressing corn. In diet assays, LC50s ranged from 0.14 (eCry3.1Ab) to 10.6 µg/cm2 (Cry34/35Ab1), EC50s ranged from 0.12 (Cry34/35Ab1) to 1.57 µg/cm2 (mCry3A), IC50s ranged from 0.08 (eCry3.1Ab) to 2.41 µg/cm2 (Cry34/35Ab1), and MIC50s ranged from 2.52 (eCry3.1Ab) to 14.2 µg/cm2 (mCry3A). These results establish the toxicity of four Bt proteins to a laboratory diapausing NCR strain established prior to the introduction of Bt traits and are important for monitoring resistance evolution in NCR field populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call