Abstract

AbstractOviposition by northern corn rootworms, Diabrotica barberi Smith and Lawrence, and western corn rootworms, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), key pests of corn in the Great Plains of the USA, occurs in the soil during late summer. Overwintering eggs are exposed to variable soil moisture and temperatures below −5 °C. The winter mortality of eggs in the soil is a primary factor that determines the potential for larval injury to corn the following spring. Our studies aimed to determine the comparative supercooling capacities of northern and western corn rootworm eggs and to assess egg mortality following brief exposure to extreme low temperature, ranging from −12.0 to −21.5 °C, under three moisture regimes. Eggs of northern corn rootworm were supercooled to a temperature as low as −27 °C, and survived supercooling to a greater extent than did western corn rootworm eggs. Moisture treatment prior to supercooling had little effect on northern corn rootworm eggs. Western corn rootworm eggs were more resistant than northern corn rootworm eggs to the effects of desiccation followed by supercooling. The survival of northern corn rootworm eggs was better than western corn rootworms under dry conditions, followed by exposure to temperatures of −12.0 and −17.5 °C, but was very low at −21.5 °C, regardless of the moisture regime. The results suggest that moisture and temperature may interact in the soil environment to determine the overwintering survival of corn rootworms. It is evident from these studies that both rootworm species experience mortality at temperatures well above the supercooling points of the eggs, but that differences exist in the effects of substrate moisture treatments on the cold‐hardiness of eggs from the two species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call