Abstract
Lin et al. (http://www.biostatsresearch.com/upennbiostat/papers/, 2006) proposed a nested Markov compliance class model in the Imbens and Rubin compliance class model framework to account for time-varying subject noncompliance in longitudinal randomized intervention studies. We use superclasses, or latent compliance class principal strata, to describe longitudinal compliance patterns, and time-varying compliance classes are assumed to depend on the history of compliance. In this paper, we search for good subject-level baseline predictors of these superclasses and also examine the relationship between these superclasses and all-cause mortality. Since the superclasses are completely latent in all subjects, we utilize multiple imputation techniques to draw inferences. We apply this approach to a randomized intervention study for elderly primary care patients with depression.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have