Abstract
BackgroundOne potential source of error in phase contrast (PC) congenital CMR flow measurements is caused by phase offsets due to local non-compensated eddy currents. Phantom correction of these phase offset errors has been shown to result in more accurate measurements of blood flow in adults with structurally normal hearts. We report the effect of phantom correction on PC flow measurements at a clinical congenital CMR program.ResultsFlow was measured in the ascending aorta, main pulmonary artery, and right and left pulmonary arteries as clinically indicated, and additional values such as Qp/Qs were derived from these measurements. Phantom correction in our study population of 149 patients resulted in clinically significant changes in 13% to 48% of these phase-contrast measurements in patients with known or suspected heart disease. Overall, 640 measurements or calculated values were analyzed, and clinically significant changes were found in 31%. Larger vessels were associated with greater phase offset errors, with 22% of the changes in PC flow measurements attributed to the size of the vessel measured. In patients with structurally normal hearts, the pulmonary-to-systemic flow ratio after phantom correction was closer to 1.0 than before phantom correction. There was no significant difference in the effect of phantom correction for patients with tetralogy of Fallot as compared to the group as a whole.ConclusionsPhantom correction often resulted in clinically significant changes in PC blood flow measurements in patients with known or suspected congenital heart disease. In laboratories performing clinical CMR with suspected phase offset errors of significance, the routine use of phantom correction for PC flow measurements should be considered.
Highlights
One potential source of error in phase contrast (PC) congenital cardiac magnetic resonance (CMR) flow measurements is caused by phase offsets due to local non-compensated eddy currents
There are a number of potential sources of error in PC CMR flow measurements, including aliasing due to inappropriate velocity encoded (VENC) parameters, signal loss due to complex or turbulent flow, partial volume averaging due to limited spatial resolution, signal misregistration due to in-plane movement during signal acquisition, and phase offset errors due to local non-compensated eddy currents [2,3,5,6]
We designed this study with the following objectives: 1) to assess the effect of phantom correction on PC flow measurements in patients referred to a busy congenital CMR program, 2) to assess the relationship between blood vessel size and the magnitude of change in flow measurement with phantom correction, and 3) to assess whether patient diagnosis impacts on the magnitude of phantom correction
Summary
One potential source of error in phase contrast (PC) congenital CMR flow measurements is caused by phase offsets due to local non-compensated eddy currents. There are a number of potential sources of error in PC CMR flow measurements, including aliasing due to inappropriate VENC parameters, signal loss due to complex or turbulent flow, partial volume averaging due to limited spatial resolution, signal misregistration due to in-plane movement during signal acquisition, and phase offset errors due to local non-compensated eddy currents [2,3,5,6]. Most of these sources of potential error can be minimized by optimizing imaging parameters. We assessed the effect of background correction using prospectively defined measures of clinically significant and marked errors
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.