Abstract

In this study, a bidirectional mag-thermal coupling method is used to simulate the temperature rise of the switching power supply transformer. According to the loss and temperature rise characteristics of the transformer, theoretical analysis and simulation are carried out. A set of optimized windings and design methods based on the upper limit of temperature rise are proposed. The simulation results show that the optimized windings reduce the winding loss, and improve the efficiency of the transformer by 5%, and reduce the temperature rise by 10%. The average temperature rise curve is consistent with the experimental ones of the transformer. Compared with unidirectional coupling, the method greatly improves the simulation accuracy by 4%. This research has certain guiding significance for the thermal design of switching power transformer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.