Abstract
An analytical model for the base transit time tau <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">b</sub> for an exponentially doped base is developed assuming a small change in electron concentration in the base of a bipolar junction transistor at high injection from its low injection value. The model is valid in all levels of injection before the onset of the Kirk effect. In this analysis, bandgap-narrowing effect, high-injection effect, and carrier velocity saturation at the base edge of the base-collector junction, and also doping and field dependence of mobility, are incorporated. The base transit time calculated analytically is compared with simulation and numerical results, and also with experimental data in order to demonstrate the validity of the assumptions made in deriving the expression. The base transit time is found to be different if the field dependent mobility is considered
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.