Abstract

Mining in an open-pit slope results in the deformation and instability of rock masses. Correspondingly, it is difficult to quantify the range of internal rock mass damage completely. In this study, a base friction testing method is proposed for the analysis of mining models in an open-pit slope, and new methodology is proposed which combines digital image correlation (DIC) and particle image velocimetry (PIV) techniques to analyze the entire deformation process. A series of base friction tests is performed to reveal the deformation mechanism of the mining model in an open-pit slope, and findings are compared with those obtained from a mining model without an open-pit slope. The test results showed two different types of damage: staged parabolic-like and progressive trapezoidal-like damages. Moreover, the proposed methodology can obtain the entire displacement and velocity vector distributions (from deformation to damage) inside the slope and convert it into data for visualization. This provides a reference for the evaluation and control of field open-pit slopes in similar conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call