Abstract
We define and study new classifications of qcb\(_0\)-spaces based on the idea to measure the complexity of their bases. The new classifications complement those given by the hierarchies of qcb\(_0\)-spaces introduced in [7, 8] and provide new tools to investigate non-countably based qcb\(_0\)-spaces. As a by-product, we show that there is no universal qcb\(_0\)-space and establish several apparently new properties of the Kleene-Kreisel continuous functionals of countable types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.