Abstract
A metric space (X,d) is monotone if there is a linear order 0 such that d(x,y)≦cd(x,z) for all x<y<z∈X. Properties of continuous functions with monotone graph (considered as a planar set) are investigated. It is shown, for example, that such a function can be almost nowhere differentiable, but must be differentiable at a dense set, and that the Hausdorff dimension of the graph of such a function is 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.