Abstract

A smoothing method for solving stochastic linear complementarity problems is proposed. The expected residual minimization reformulation of the problem is considered, and it is approximated by the sample average approximation (SAA). The proposed method is based on sequential solving of a sequence of smoothing problems where each of the smoothing problems is defined with its own sample average approximation. A nonmonotone line search with a variant of the Barzilai–Borwein (BB) gradient direction is used for solving each of the smoothing problems. The BB search direction is efficient and low cost, particularly suitable for nonmonotone line search procedure. The variable sample size scheme allows the sample size to vary across the iterations and the method tends to use smaller sample size far away from the solution. The key point of this strategy is a good balance between the variable sample size strategy, the smoothing sequence and nonmonotonicity. Eventually, the maximal sample size is used and the SAA problem is solved. Presented numerical results indicate that the proposed strategy reduces the overall computational cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call