Abstract

The aim of this paper is to investigate the convergence properties for Mordukhovich’s coderivative of the solution map of the sample average approximation (SAA) problem for a parametric stochastic variational inequality with equality and inequality constraints. The notion of integrated deviation is introduced to characterize the outer limit of a sequence of sets. It is demonstrated that, under suitable conditions, both the cosmic deviation and the integrated deviation between the coderivative of the solution mapping to SAA problem and that of the solution mapping to the parametric stochastic variational inequality converge almost surely to zero as the sample size tends to infinity. Moreover, the exponential convergence rate of coderivatives of the solution maps to the SAA parametric stochastic variational inequality is established. The results are used to develop sufficient conditions for the consistency of the Lipschitz-like property of the solution map of SAA problem and the consistency of stationary points of the SAA estimator for a stochastic bilevel program.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.