Abstract

Strong chromofields generated at early stages of ultrarelativistic nuclear collisions may explain not only creation of the quark-gluon plasma but also collective deceleration of net baryons. This is demonstrated by solving classical equations of motion for baryonic slabs under the action of a time-dependent chromofield. We have studied sensitivity of the slab trajectories and their final rapidities to the initial strength and decay time of the chromofield, as well as to the back reaction of the produced plasma. By proper choice of the initial chromofield energy density we can reproduce significant baryon stopping, an average rapidity loss of about two units, observed for Au + Au collisions at RHIC. Using a Bjorken-like hydrodynamical model with the particle production source, we also study the evolution of partonic plasma produced as the result of the chromofield decay. Due to the delayed formation and expansion of plasma its maximum energy density is significantly lower than the initial energy density of the chromofield. It is shown that the fluctuations of the chromofield due to the stochastic distribution of color charges help to populate the midrapidity region in the net-baryon distribution. To fit the midrapidity data we need the chromofields with initial energy densities in the range of 30 to 60 GeV/fm3. Predictions of baryon stopping for Pb + Pb collisions at LHC energies are made.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call