Abstract

The baryon acoustic oscillation (BAO) experiment requires a sufficiently dense sampling of large-scale structure tracers with spectroscopic redshift, which is observationally expensive especially at high redshifts $z\simgt 1$. Here we present an alternative route of the BAO analysis that uses the cross-correlation of sparse spectroscopic tracers with a much denser photometric sample, where the spectroscopic tracers can be quasars or bright, rare galaxies that are easier to access spectroscopically. We show that measurements of the cross-correlation as a function of the transverse comoving separation rather than the angular separation avoid a smearing of the BAO feature without mixing the different scales at different redshifts in the projection, even for a wide redshift slice $\Delta z\simeq 1$. The bias, scatter, and catastrophic redshift errors of the photometric sample affect only the overall normalization of the cross-correlation which can be marginalized over when constraining the angular diameter distance. As a specific example, we forecast an expected accuracy of the BAO geometrical test via the cross-correlation of the SDSS and BOSS spectroscopic quasar sample with a dense photometric galaxy sample that is assumed to have a full overlap with the SDSS/BOSS survey region. We show that this cross-correlation BAO analysis allows us to measure the angular diameter distances to a fractional accuracy of about 10% at each redshift bin over $1\simlt z\simlt 3$, if the photometric redshift errors of the galaxies, $\sigma_z/(1+z)$, are better than 10-20% level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.