Abstract

The goal of this paper is to establish the requirements of a barycentric correction with an rms of ≲1 cm s-1, which is an order of magnitude better than necessary for the Doppler detection of true Earth analogs (∼9 cm s-1). We describe the theory and implementation of accounting for the effects on precise Doppler measurements of motion of the telescope through space, primarily from rotational and orbital motion of the Earth, and the motion of the solar system with respect to target star (i.e., the “barycentric correction”). We describe the minimal algorithm necessary to accomplish this and how it differs from a naïve subtraction of velocities (i.e., a Galilean transformation). We demonstrate the validity of code we have developed from the California Planet Survey code via comparison with the pulsar timing package, TEMPO2. We estimate the magnitude of various terms and effects, including relativistic effects, and the errors associated with incomplete knowledge of telescope position, timing, and stellar position and motion. We note that chromatic aberration will create uncertainties in the time of observation, which will complicate efforts to detect true Earth analogs. Our code is available for public use and validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.