Abstract

Abstract We provide formulae for the calculation of precise Doppler velocities of sunlight, in both the case of direct observations of the Sun and in reflection from the surfaces of solar system objects such as the Moon or asteroids. We discuss the meaning of a “barycentric correction” of measurements of these Doppler velocities, which is a different procedure from the analogous correction for starlight, and provide a formula for reducing such measurements to the component of the Sun’s motion in the direction of Earth or other solar system object. We have implemented this procedure in the public barycorrpy Python package and use it to explore the properties of the barycentric-corrected Doppler velocity of sunlight over 30 yr. When measured directly, we show that it is dominated by nonperiodic motion due to Jupiter and that the signals of the other planets, including Venus, are not discernible in Fourier space. We show that “detecting” Venus in Doppler velocities of sunlight will require either observing sunlight in reflection from an asteroid or modeling their individual contributions to the motion of the Sun in counterfactual kinematic or dynamical simulations of the solar system with and without them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.