Abstract

The paper derives Bartlett corrections for improving the chisquare approximation to the likelihood ratio statistics in a class of location-scale family of distributions, which encompasses the elliptical family of distributions and also asymmetric distributions such as the extreme value distributions. We present, in matrix notation, a Bartlett corrected likelihood ratio statistic for testing that a subset of the nonlinear regression coefficients in this class of models equals a given vector of constants. The formulae derived are simple enough to be used analytically to obtain several Bartlett corrections in a variety of important models. We show that these formulae generalize a number of previously published results. We also present simulation results comparing the sizes and powers of the usual likelihood ratio tests and their Bartlett corrected versions when the scale parameter is considered known and when this parameter is uncorrectly specified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.