Abstract

The barrier and interface states of Ti, Mo, Ni, and Pt contacts to 4H-SiC were investigated. It is found that the barrier heights for all the contacts are Gaussianly distributed and the barrier inhomogeneity varies with the contact metal type. However, the energy-averaged interface states density in the band gap is metal-insensitive. When considering Gaussian distribution, the interface states density extracted from the electrical properties is consistent with the average density of Gaussianly distributed 4H-SiC surface states, indicating that the barrier inhomogeneities at metal/SiC contacts mainly originate from the spatial variation of surface states on SiC surface. The barrier height and barrier inhomogeneity could be modulated by the contact metal, obeying the barrier height theory of Cowley and Sze.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.