Abstract
This paper considers the problem of trajectory tracking and collision avoidance for a class of high-order nonlinear strict feedback systems with unknown nonlinearities. The main issue is how to ensure collision avoidance and tracking performance simultaneously in the presence of unknown nonlinear functions. To address the issue, an integral-multiplicative barrier Lyapunov function (BLF) is integrated into the backstepping procedure to remove the dynamic mismatching issue of the existing SUM-type BLF. It has been proven that the proposed adaptive approach ensures both collision avoidance and tracking performance of high-order nonlinear systems in multi-obstacle environments, and all the signals in the closed-loop system are uniformly ultimately bounded (UUB). Simulation results confirm the effectiveness of the proposed method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have