Abstract

During development of the sensory cortex, the ascending innervation from deep to upper layers provides a temporary scaffold for the construction of other circuits that remain at adulthood. Whether an alteration in this sequence leads to brain dysfunction in neuro-developmental diseases remains unknown. Using functional approaches in a genetic model of Absence Epilepsy (GAERS), we investigated in barrel cortex, the site of seizure initiation, the maturation of excitatory and inhibitory innervations onto layer 2/3 pyramidal neurons and cell organization into neuronal assemblies. We found that cortical development in GAERS lacks the early surge of connections originating from deep layers observed at the end of the second postnatal week in normal rats and the concomitant structuring into multiple assemblies. Later on, at seizure onset (1 month old), excitatory neurons are hyper-excitable in GAERS when compared to Wistar rats. These findings suggest that early defects in the development of connectivity could promote this typical epileptic feature and/or its comorbidities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.