Abstract

AbstractDetermination of barley (Hordeum vulgare L.) nutrient uptake in residue biomass is important for agronomic, economic, and environmental decisions. Improved understanding of grain yield, residue biomass, nutrient uptake, and their relationships are needed. Research determined these factors in 2018 and 2019 from trials of four barley classes (spring animal feed, human food, and malt, as well as winter malt), using three common cultivars of each, at five locations in southern Idaho. Production environment created the largest difference in residue biomass and nutrient uptake. Barley harvest index ranged from 0.46 to 0.52 Mg Mg−1 across feed, food, and malt classes. Compared to previous estimates, nutrient concentrations from the combined dataset were greater than for N, less than for P, and greater than for K. Correlation of grain yields to nutrient uptake (excluding Cu and Fe) had r2 ranging from 0.68 to 0.89. At current prices, economic analysis indicated that fertilizer replacement costs for total residue biomass nutrients were greater than previous estimates and could greatly exceed current sale value. These relationships and value estimates can be used to improve prediction of barley residue biomass production and nutrient uptake to guide best management practices. The decision of how to utilize these metrics (on‐farm, regional, etc.) should be considered based on known variation in measured nutrient and residue data and considered in relation to the proposed task.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.