Abstract

The influence of irrigation frequency (same amount of water per day given at different times) on nutrient uptake of container-grown evergreen Rhododendron ‘P.J.M. Compact’ (PJM) and ‘English Roseum’ (ER) and deciduous Rhododendron ‘Gibraltar’ (AZ) grown with different rates of nitrogen (N) fertilizer was evaluated. Increased N application rate increased nutrient uptake and plant dry biomass. Irrigation frequency did not significantly influence total plant dry biomass; however, more frequent irrigation decreased net uptake of several nutrients including phosphorus (P), boron (B), and manganese (Mn) uptake in all cultivars; potassium (K), copper (Cu), and zinc (Zn) uptake in AZ and ER; sulfur (S) uptake in ER and PJM; and iron (Fe) uptake in AZ. Additionally, more frequent irrigation of evergreen cultivars increased calcium (Ca) uptake. Covariate analyses were used to compare nutrient uptake among cultivars and irrigation treatments after accounting for the variability in nutrient uptake attributable to differences in biomass and N uptake. For most nutrients, the influence of irrigation frequency on uptake was partially attributable to differences in biomass and N uptake. After accounting for the variability in nutrient uptake associated with biomass or N uptake, increased irrigation frequency decreased P, S, B, Cu, and Mn uptake only in ER and increased Ca uptake in the two evergreen cultivars. Differences in nutrient uptake among cultivars in response to irrigation treatments were related to water and N availability during production and their combined influence on water stress, nutrient uptake, and biomass partitioning. Estimates of nutrient demand and uptake efficiency using nutrient concentrations and ratios are discussed in relation to nutrient management differences for different cultivars and irrigation treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call